世新大學九十九學年度碩士班招生考試試題卷

第 1 頁共計 2 頁

系所組別	考	試	科	目	
資訊管理學系資訊科技組		離散	數學		

※本考題 □可使用 ▽禁止使用 簡易型電子計算機

※考生請於答案卷內作答

- 1. Let $A = \{1, \{1\}, \{2\}, 2\}$. Which of the following are true? Which of the following are false? (20 分、每小題 2 分) (請回答 "T (True)" 或 "F (False)")
 - $(1) \{1\} \in A$
- (2) $\{1\} \subseteq A$ (3) $\{1, 2\} \in A$
- $(4) \{1, 2\} \subseteq A$

- $(5) \{2\} \in A$
- $(6) \ 2 \in A$
- $(7) \{2\} \subset A$
- $(8) \{\{1,2\}\} \subset A$

- (9) $\{\{1\}, \{2\}\} \subseteq A$ (10) |P(A)| = 8, where P(A) is the power set of A.
- 2. Are the following two graphs isomorphic? Prove it or explain the reason. (10 分)

- 3. (a) $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Write three different onto functions from A to B. (3 分)
 - (b) $C = \{1, 2, 3, 4\}$ and $D = \{a, b, c, d, e\}$. Write two different one-to-one functions from C to D. (2 分)
 - (c) $Y = \{3, \{6\}\}$. Write the power set of Y, P(Y). (5 分)
- 4. Let $x = \gcd(750, 111)$ and x = 750t + 111s. Find the general solution of t and s. (5) 分)
- 5. Solve the recurrence relation $L_n = L_{n-1} + L_{n-2}$, $n \ge 2$, $L_0 = 2$, $L_1 = 1$. (8 %)
- 6. Let $A = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 45\}$ and $R = \{(x, y) \mid x \text{ divides } y\}$ is a relation on A.
 - (a) Prove that R is a partial order on A. (9 分)
 - (b) Draw the Hasse Diagram of R. (6 分)

世新大學九十九學年度碩士班招生考試試題卷

第 2 頁共計 2 頁

系所組別	考	試	科	目	- N. S MANUE		
資訊管理學系資訊科技組	離散數學						

※本考題 □可使用 ☑禁止使用 簡易型電子計算機

※考生請於答案卷內作答

- 7. Determine the number of all integer solutions of $x_1 + x_2 + x_3 < 30$, where x_1 , $x_2 > 0$, and $x_3 \ge 0$. (7 %)
- 8. Prove the following statement. (7分)
 Suppose that we select any 20 distinct integers from A = {1, 2, ···, 36, 37}, i.e. A contain the integers from 1 to 37. There must exist two numbers x and y of them such that x + y = 38.
- 9. Let G(V, E) be a n-vertex loop-free connected planar graph with m > 2 edges and r regions. Show that 3r ≤ 2m and m ≤ 3n 6. (Hint: You can use the result of Euler's Theorem: n-m+r=2) (10 分)
- 10. Let S(n): n can be written as the sum of $k \ge 1$ numbers $a_1, ..., a_k$ such that $a_j \in \{2, 5\}$, for all $1 \le j \le k$. Prove that S(n) is true for all positive integers $n \ne 1, 3$. (8 %)